

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 3 1–14 Cyber Security: A Peer-Reviewed Journal 1

Moving target defence: Economics
and asymmetry
Received (in revised form): 21st November, 2019

Don Maclean
Chief Cybersecurity Technologist, DLT – A Tech Data Company, USA

Don Maclean is Chief Cybersecurity Technologist for DLT – A Tech Data Company and formulates
and executes cyber security portfolio strategy, speaks and writes on security topics and socialises
his company’s cyber security portfolio. Don has nearly 30 years’ experience working with US Federal
agencies. Before joining DLT in 2015, Don managed security programmes for numerous US Federal
agencies, including the Department of Justice (DOJ), Department of Labor (DOL), Federal Aviation
Administration (FAA), Federal Bureau of Investigation (FBI) and the Treasury Department. This experience
allowed him to observe the strengths and limitations of traditional cyber security defences, leading to his
interest in innovative technologies such as those featured in this paper. In addition to his CISSP, PMP and
CCSK certificates, Don holds a BA in music from Oberlin, an MS in information security from the Brandeis
Rabb School, and is a recipient of the FedScoop 50 award for industry leadership. An avid musician, Don
organises a concert for charity every year, and has been known to compete in chess and Shogi (Japanese
chess) tournaments, both in person and online.

Don Maclean, Chief Cybersecurity Technologist, DLT – A Tech Data Company, 2411 Dulles Corner Park, Herndon,

VA 20171, USA

Tel: +1 571-346-1854; E-mail: Don.Maclean@DLT.com

Abstract In cyberspace, warfare is asymmetric. It takes only a small army of well-trained
hackers to inflict major damage on a much larger adversary. Ironically, the inequity stems
from standardisation. When bad actors find a vulnerability in a popular application or
operating system, they can exploit it on millions of systems, yielding exponential reward
for linear effort. The hacker’s advantage, then, is economic rather than technical. Unless
and until we reverse this dynamic, the adversary will have the advantage. Moving target
defence (MTD), also called polymorphic defence, has the potential to diminish the enemy’s
asymmetric advantage. This paper surveys the major MTD technologies currently on the
market and under development, with special attention to dynamic runtime environments.
In particular, it explores how each technology might reverse, or at least mitigate, the
economic leverage the enemy now exerts when discovering and exploiting vulnerabilities.

KEYWORDS: moving target defence (MTD), polymorphic, address space layout
randomisation (ASLR), instruction set randomisation (ISR), attack surface, honeypot,
honeynet, diversity

THE PROBLEM
Before examining MTD solutions, let us
first define the problems they seek to solve
and the environment in which they must
be implemented. This will clarify both the
obstacles to and prospects for success of these
technologies.

Security philosophy: Maginot mentality
In the 1930s, the French famously
constructed the elaborate and expensive
Maginot Line, ‘defensive fortifications built
before World War II to protect the eastern
border of France but easily outflanked by
German invaders’.1 Although historians
debate the issue, the line is synonymous with

Maclean.indd 1Maclean.indd 1 22/05/2020 08:0322/05/2020 08:03

Maclean

2 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

‘a defensive barrier or strategy that inspires a
false sense of security’.2

These aspects of the line are relevant
today. On a technical level, the Maginot
Line incorporated state-of-the-art defensive
technology, but still failed in the face of
faster, more modern German weaponry. In
cyber security today, attackers consistently
outwit defenders by moving more rapidly
and using innovative methods of attack.3

On a human level, it created a false sense
of security that caught the French off guard
when the Germans attacked. In our world,
we place far too much trust in a perimeter
defence strategy, while failing to appreciate
the danger posed by our adversaries.4

Most importantly, the Maginot Line
consumed vast quantities of resources —
financial, intellectual, human — yet failed to
provide adequate safety. Similarly, the cyber
security defence industry thrives, but fails to
offer enough defence.5 Indeed, the industry
needs to avoid truly effective solutions, or it
would put itself out of business.6

The MTD approach adopts a radically
different philosophy.7 MTD technologies
seek agility over impregnability by constantly
varying the attack surface available to the
adversary. This approach raises several key
questions, which this paper will address.
What is the definition of ‘attack surface’?
How is it measured? How do the attacker
and defender view the attack surface? What
aspects of the attack surface should change,
when should they change, how should they
be changed, and who should do the changes?
Most importantly, can MTD truly reverse
the economic and time asymmetry currently
favouring the bad actors?

THEORETICAL MODELS
MTD technologies borrow from or emulate
models from other disciplines, some of which
is described briefly below. I have based my
comments and evaluations largely around the
attack surface model.

• Biology: In nature, animals such as the
mimic cctopus, disguise themselves
to deceive predators. Some MTD
technologies overlap with deception
(‘honeypot’) technologies to mislead
attackers;

• Genetic diversity: In nature, genetic diversity
limits the spread of disease. Much of our
DNA is identical to our fellow humans,
but there is enough diversity to ensure
that an epidemic, while devastating, is not
entirely apocalyptic;

• Military: Deception is a nearly universal
tactic in warfare, and a static target (such as
the Maginot Line) is a vulnerable target;

• Game theory: Approaches based on
game theory are common,8 because
‘the opposition, dependency, and
noncooperative features in network
confrontation are highly compatible with
the feature of game theory’9;

• Attack graph: Approaches based on an
attack graph are also widely studied,
since they can ‘describe complex attack
sequence that causes system state transition
by considering vulnerability, attack goals,
and node connectivity in targeted system
simultaneously’10;

• Attack surface: Reduction or transformation
of attack surfaces is a significant goal of
many MTD technologies and research. A
definition follows.

ATTACK SURFACE: TOWARD A
DEFINITION
Attack surface
If the goal of MTD is to complicate the
attacker’s task by altering or reducing the
attack surface, we must codify the term.

The concept of attack surface is intuitive,
but at present it lacks a formal, widely
accepted definition. For this paper, I will use
the definition formulated by Manadhata and
Wing.11 Their complete formal definition,
and its underlying theory, is extensive and
rigorous, and would exceed the space

Maclean.indd 2Maclean.indd 2 22/05/2020 08:0322/05/2020 08:03

Moving target defence

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 4 1–14 Cyber Security: A Peer-Reviewed Journal 3

constraints of this paper. Therefore, I offer
a summary version of their approach here.
Readers interested in more detail can refer
to the 2011 article ‘A Formal Model for a
System’s Attack Surface’.12

Manadhata and Wing define an attack
surface in terms of methods (M), channels
(C) and untrusted data items (I), which form
a set of resources. A method is a technique for
breaching a system, a channel is the means
of communication through which attackers
exfiltrate data or introduce malicious input.
An untrusted data item may be ephemeral
or persistent and is any input that seeks to
compromise the target system. They further
state that:

‘A resource is part of the attack surface if
an attacker can use the resource in attacks
on the system [whose] contribution to the
attack surface measurement reflects the
likelihood of the resource being used in
attacks. For example, a method running
with root privilege is more likely to be
used in attacks than a method running
with non-root privilege.’13

From this definition, they derive the desired
metric: the damage potential-effort ratio, which
‘indicates the level of damage an attacker
can potentially cause to the system and the
effort required for the attacker to cause such
damage’.14

Since the elements in a resource are
countable, the result is a sound metric for
measurement of the attack surface. The
authors created the metric to measure
individual systems or environments. It is,
however, essential also to view the attack
surface from the attacker’s perspective. While
they may attack individual systems, they
develop, leverage, weaponise or monetise
exploits that work across a vast collection of
potential targets.

MTD DESCRIPTION AND
FRAMEWORK
Activities and taxonomy
Like ‘attack surface’ the term ‘moving target
defence’ has no current formal definition.
It is still possible, however, to set forth a
reasonable structure to clarify what it entails.
As its name implies, one or more things in an
MTD system must ‘move’.

The term ‘moving target defence’ is a
metaphor, not a descriptor. Some MTD
technologies, such as address space layout
randomisation (ASLR), do in fact move code
or data within memory. Other technologies
alter systems in other ways, but do not
actually ‘move’ anything. It might be more
accurate then, to discuss ‘what to alter’. For
consistency, however, I will use the term
‘move’, keeping in mind its metaphorical
nature.

A simple and clear description of the
requisite ‘moving’ activities came from
Sengupta et al.,15 who outline three criteria
for ‘moving’:

What to move
Broad categories for what to move in
MTD:16

• Data;
• Memory (code, data, and flow-control

mechanisms such as pointers);
• Applications;
• Dynamic runtime environments;
• Networks and platforms.

More specific items include the following:

• Instruction sets;17

• Address space layouts;18

• IP addresses, port numbers, proxies;19

• Virtual machines;20

• Flow-control mechanisms such as pointers,
stack and/or heap addresses;

• Keywords and tokens.

Maclean.indd 3Maclean.indd 3 22/05/2020 08:0322/05/2020 08:03

Maclean

4 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

How to move it21

The MTD approach emphasises speed and
agility, so viable MTD technologies must be
easy to operate, ideally automatic. Moreover,
the move operation should not be transparent
to the attacker, except that the attacker
realizes that the attack has failed.

When to move it22

Some technologies can move/alter an
attack surface:

• On demand;
• On a predetermined schedule;
• In response to an attack or attack

predecessors.

In addition, Cho et al.23 categorised MTD
technologies under the broad rubric of
‘shuffling, diversity and redundancy’ (SDR).

Examples of shuffling would include
changing IP addresses, TCP/UDP port
numbers and automated failover/switching
of virtual machines. Diversity includes
deployment of similar systems that perform
equivalent functions in different ways or
to determine discrepancies. Redundancy
involves multiple, identical systems for both
resiliency and security.

Implementation
Implementation considerations will also be
explored, specifically:

1. Availability and maturity concerns: Many
MTD approaches are either purely
theoretical or are in the early stages of
research. A large number are not available
to the public, although there are some
open-source projects in play, along with
some commercially available products;

2. Performance impact: Nearly all MTD
technologies affect the performance
of underlying systems. The impact of
market-tested commercially available
products can be measured accurately from

experience with them in production. The
impact of theoretical or early-research
methods is likely to improve with further
development. Performance impact is an
indirect cost of using an MTD system;

3. Expertise required for implementation and
operation: Implementation and operation
are costs of any system, security or
otherwise, and both require some level
of technical knowledge. The lower the
requisite skill level, the lower the cost.
Since the goal is to invert the economic
asymmetry of defence vs attack, this is
an essential indicator of viability. Given
the low maturity of so many MTD
technologies, however, these costs tend
to be estimates, rather than evidential
or statistical;

4. Hybrid MTD technologies: One approach
to MTD is to combine multiple
technologies to complicate the attacker’s
task. Some technologies lend themselves
readily to such scenarios, others are more
suitable for stand-alone implementation
and operation.

CURRENT SCENARIO
The technical aspects of cyber security are
complex and fascinating for both attackers
and defenders. Consequently, practitioners
treat the battle as a contest of technological
prowess. It may be more relevant, however,
to view the issue in economic terms — a
game of costs.

Defending a system and attacking a system
both require the expenditure of resources,
some combination of technical expertise,
human effort and computing resources with
their attendant expenses. When an attacker
discovers an exploit, they gain access to
millions of similar systems, allowing them
to leverage their expenses exponentially.
Moreover, they can recoup their costs or
make a profit by selling their discovery —
as packaged malware, as knowledge or as a
server — to others.

Defenders, by contrast, leverage their

Maclean.indd 4Maclean.indd 4 22/05/2020 08:0322/05/2020 08:03

Moving target defence

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 4 1–14 Cyber Security: A Peer-Reviewed Journal 5

defence expenditures only across their own
relatively small number of systems. When
defenders discover an exploit, they might
share it as a matter of civic responsibility, but
generally do not recoup the cost of discovery,
the occasional ‘bug bounty’ being the
exception rather than the rule.

The attacker has a much stronger
economic incentive than the defender.
This disparity accounts for the untenable
state of affairs in cyber security today. Bad
actors simply have more leverage than the
‘white hats’.

The goal of MTD is to reverse this
dynamic, or at least minimise the disparity
in economic incentives. When the attack
surface changes constantly, the attacker
loses the ability to leverage an exploit across
multiple systems. They might gain access to
a single machine or system but cannot reuse
the exploit elsewhere. The defender does not
seek the chimera of impregnability, only the
minimisation of the value of the attacker’s
activities.

TECHNOLOGY SURVEY
MTD data technologies
Ward et al.24 investigated or prototyped MTD
methods applicable at the data level. At time
of writing, none are available to the public
for review or research. Most require a high
level of expertise for implementation and all
carry a performance penalty, ranging from
trivial to significant. (Further development
might mitigate these issues.)

Since these methods apply to data only
as processed by specific applications, I see in
them little promise for significant reversal
of the asymmetry between the attacker and
defender. I will therefore provide only a brief
synopsis of these methods.25

Data diversity through fault tolerance
Data diversity through fault tolerance26 uses
multiple, independently developed copies
of the same application. Given a specific

input, they should generate the same, or
semantically equivalent, output. A voting
mechanism determines if a given output is
unacceptable. If so, a warning or other action
such as discarding the suspicious output,
takes place. This technique straddles the
line between the dynamic data and dynamic
software categories, but Ward et al.27 place it
under the former, since the focus here is on
evaluation of inputs.

SDR category: Diversity
Redundant data diversity
Like the previous technique, this method28
uses multiple algorithms to create
transformations of inputs — primarily
inputs to system calls — and includes a
voting mechanism to identify potentially
illicit inputs.

SDR category: Diversity
Data randomisation
This method29 randomises operands capable
of unsafe memory reads or writes by
XOR-ing them with a secret key before
storage in memory and reversing the
operation when the operand is used during
execution. It uses multiple keys for each
runtime instance, and the keys are different
each time the programme executes.

SDR category: Shuffling
Diglossia
This technique30 focuses on a single use case,
ie sanitising SQL and NoSQL query input
— a perennial problem in cyber security
defence. Diglossia maps user-input queries
to a shadow character set, then parses both
the result and the original query, a method
called dual parsing. If the two results are
not syntactically isomorphic, the query is
not processed.

The benefits of this method are its
feasibility — far less broad than end-to-end
software diversification, for example — and

Maclean.indd 5Maclean.indd 5 22/05/2020 08:0322/05/2020 08:03

Maclean

6 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

its applicability to a persistent issue. Many
of the SQL injection issues, however, result
from poor coding practices. Implementation
of this method could allow such practices to
continue, by relieving developers from the
need to learn secure coding practices.

SDR category: Diversity, redundancy
NOMAD
This method31 regularly updates HTML
element names to thwart web bots. Like
Diglossia, it has a narrow, but important
focus. Unlike Diglossia, it would not
compensate for poor coding practices.

SDR category: Shuffling
HERMES
HERMES32 aims to prevent key theft
by splitting keys across multiple virtual
machines, using distributed RSA and
threshold RSA. It would allow scheduled
key rotation, customisable by the system
administrator.

This technique has been tested, and
hopefully code for it will soon be available.
It has a specific focus on key protection, but
broad applicability. Initial testing indicates
that it is feasible in large-scale cloud
environments.

SDR category: Shuffling
Content randomisation of Microsoft Office
documents
This method33 aims to defeat exploits
embedded in MS Office documents by
arbitrarily re-ordering components of
object linking and embedding (OLE) and
office open extensible markup language
(OOXML). Bad actors continue to distribute
malware through infected attachments and
phishing campaigns, so this method addresses
a key problem. It is limited, obviously, to
MS Office documents, and it is easy to
foresee bad actors finding ways to defeat or
circumvent this approach.

SDR category: Shuffling
MTD software technologies
Here I will examine some general theoretical
approaches as well as specific research efforts.
Research at this level is thriving, so I have
chosen efforts for which code is available
or bear promise of effectiveness. Readers
interested in more depth are referred to Cho
et al.,34 Zheng et al.35 and Ward et al.36

Moving attack surfaces (MAS) for web
services37

Huang and Ghosh38 propose a method they
call moving attack surfaces (MAS). MAS is
a rotational scheme that uses a set of diverse
but functionally equivalent virtual servers.
Each server is configured differently and
can be brought on- or off-line according
to a schedule, or in response to an event
(attack, attack indicator or other unforeseen
circumstance). Selection of server is random
to create uncertainty for the attacker.

The design entails two types of
uncertainty: composition and reachability.
The first forces the attacker to determine
a software mix that may change during
the attack, complicating their task at a
minimum, and possibly defeating the attempt
completely.

The reachability aspect increases the
overall uncertainty for the attacker, since
they will not know which server, at any
given time, is responding to a request, or
when it will go offline and be replaced by a
functional equivalent.39

This approach bears promise in that it
increases the attackers’ cost and reduces their
‘return on investment’; however, it also
increases the defenders’ costs. Determining
and testing equivalent configurations,
procuring software from multiple vendors
and the operation of complex systems and
troubleshooting all add to both the capital
outlay and operating costs for the defender.
It is unclear at this time if this approach will
be worth the effort. Further research, testing

Maclean.indd 6Maclean.indd 6 22/05/2020 08:0322/05/2020 08:03

Moving target defence

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 4 1–14 Cyber Security: A Peer-Reviewed Journal 7

and production deployment may clarify
the answer.

SDR category: Diversity
ChameleonSoft40

Azab et al. propose a system they have
dubbed ChameleonSoft. Inspired
by biological and genetic diversity,
ChameleonSoft seeks a lofty goal: encryption
of software behaviour. Design principles
include:

‘Separating functional roles and runtime
role players; devising intrinsically-resilient
composable online programmable building
blocks; separating logic, state and physical
resources; and employing functionally-
equivalent, behaviorally-different
code variants.’41

ChameleonSoft is based on the authors’
concept of cell-oriented architecture (COA).

System functions are assigned to ‘cells’,
which are ‘dynamically composable into
organisms that are bound to functional roles
at runtime’. Such construction supports
online programmability, hot code swapping
and automated recovery.

This approach entails significant changes
to software development and deployment.
Such changes are necessary in view of the
current untenable state of cyber security, but
it is difficult to recommend adoption of such
wholesale system re-design without much
more research and testing. Even so, their
work appears fascinating, and their research
may well bear fruit.

SDR category: Shuffling, diversity, redundancy
Web application diversity
In Taguinod et al.,42 the authors outline
a method for web application diversity.
Acknowledging the need for low-level
diversity techniques such as address space
layout randomisation (ASLR) and instruction
set randomisation (ISR), they point out that

many breaches exploit weakness in high-
level languages such as personal home page
(PHP) and structured query language (SQL).
Their research therefore entails automated
language translation from Python to PHP
and use of multiple SQL dialects in lieu of a
single version.

Their research did not examine the
circumstances that would dictate moving to
PHP or to an alternate SQL dialect. They
also acknowledge a central issue with their
approach: ‘we anticipate this approach to be
resource and time intensive as it is essentially
creating two implementations of one
web application’.

SDR category: Diversity
End-to-end software diversification
This highly ambitious method seeks to
randomise software at all levels: scripting,
application programming interface (API)
calls, keywords and syntax in HTML
and HTTP and more. Given its focus on
alteration of applications and protocols, it
is not clear why the authors43 classified it
as a data method. The coordination across
multiple systems raises concerns about
feasibility, but research in this field could
produce beneficial results for specific cases,
eg randomising API calls. (Note: Ward
et al. classify this method as a dynamic data
technique, but in view of its focus on code
rather than data, I regard it as a software
technique.)

SDR category: Diversity
MDMS multitier diversification in web-
based software44

Allier et al. developed a prototype blogging
system called MDMS. MDMS can run
in numerous configurations, facilitating
diversification. It runs on Linux and
Windows alike and can use multiple versions
of Java virtual machine (JVM) and deploys
on top of the RingoJS framework, which

Maclean.indd 7Maclean.indd 7 22/05/2020 08:0322/05/2020 08:03

Maclean

8 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

enables diversification through ‘sosies’, or
multiple versions of a given application.

Multiple versions of an application are
deployed simultaneously, so that the attacker
faces multiple attack surfaces during an
attempted intrusion. The authors’ work was
a proof of concept, and they recognised
significant practical hurdles, such as load
balancing and performance impact, before
this method sees wide acceptance.

SDR category: Diversity
Security agility for dynamic execution
environments
Fraser et al.45 took an interesting approach
to the MTD problem. They created a
software toolkit to make applications
aware of underlying security policies and
respond dynamically to changes. The goal
is to modify security policy automatically
in response to attempted intrusions. This
technique would require deployment on all
systems, as well as a policy controller.46

This is an interesting way to implement
MTD. The policy controller is a central
point of failure, however, and accurate
identification of intrusion behaviour is an
ongoing difficulty in cyber security.

SDR category: Shuffling
Genprog: A generic method for automatic
software repair47

This system is tangential to MTD, but is
noteworthy nonetheless. Software patching,
or lack thereof, is a chronic problem for
system administrators. An intrusion succeeds
against at least one victim, and then the
developer must produce a patch to mitigate
the vulnerability. That delay leaves all affected
systems open to attack. While there are many
systems for applying patches automatically,
Genprog aims to create patches automatically.
In the authors’ words, Genprog ‘uses existing
test cases to automatically generate repairs
for real-world bugs in off-the-shelf legacy
applications’.48

Genprog’s goals are worthy, but if a fix
fails, systems could crash, or security could
be compromised unexpectedly. Fixing the
problem would fall squarely on the operators,
it would seem, so Genprog could create
more problems than it solves. The goal of
speedy, near-real-time patching is, however,
worthy of investigation.

SDR category: Diversity
MTD dynamic runtime environment
technologies
Dynamic runtime environment technologies,
along with moving target defence (MTD)
networking approaches, has been the
subject of much research and development:
papers, projects, and commercially available
products abound. A full list with even brief
descriptions would far exceed the available
space, so I have constrained this portion of
the survey to technologies that are currently
available, either as open source projects or
on a commercial basis or bear exceptional
promise for success.

Address space layout permutation
Kil et al.49 have proposed address space layout
permutation (ASLP), an enhanced address-
space randomisation technique. They assert
that ASLP provides 29 bits of entropy in a
32-bit architecture. It randomly relocates
code and data segments, as well as the stack,
heap and other memory regions, and they
indicate minimal performance impact. Ward
et al.50 confirm the performance claims,
noting that ‘experimental results show an
approximately 20% increase in executable
size and memory footprint’.51

‘This technique, and others like it, are
extremely promising, as they bear the
potential to mitigate whole classes of
memory-based attacks, although the
authors note that it does not yet offer
stack frame randomization to guard against
return-to-libc attacks.’52

Maclean.indd 8Maclean.indd 8 22/05/2020 08:0322/05/2020 08:03

Moving target defence

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 4 1–14 Cyber Security: A Peer-Reviewed Journal 9

SDR category: Diversity, shuffling
Dieharder
Novark and Berger53 studied the heap
allocators in Windows, Linux, FreeBSD,
and OpenBSD, to understand their effect
on security. Their allocator, DieHarder
uses address randomisation, heap space and
replication to randomize the heap itself.

The strategy used has three main elements:
address randomisation, heap spacing and
replication. Randomisation is done with a
different seed for each instance and the heap
is replicated in multiple locations in memory.
A voting mechanism, like that of Data
Diversity Through Fault Tolerance, identifies
discrepancies and suspicious behaviour. Ward
et al.54 note a large performance penalty
(50–100 per cent) and a substantial increase
in memory consumption, in view of the
heap replication.

This approach may provide some
useful insights and techniques, but given
the performance penalty and memory
consumption, it will require more
development before emerging as a viable
method in production.

SDR category: Diversity, shuffling
Function-pointer encryption
Zhu and Tyagi55 seek to protect against
function pointer overwrites by encrypting
each function pointer with a simple
encryption scheme (*fp XOR random_
number), with the random number chosen
differently for each program execution. They
assert two benefits to this approach:56

‘(1) orthogonality of key space, (2) zero
incremental knowledge gain for the
adversary between two attacks on two
different program runs.’

Ward et al.57 evaluated the performance
penalty at 4 per cent and stated an
unquantified but ‘likely small’ impact on
memory consumption.

This approach is elegant and simple and

addresses a significant attack vector — buffer
overflows.

SDR category: Shuffling
In-place code randomization
Pappas et al.58 have taken on a major
challenge: fighting return-oriented
programming (ROP) attacks. ROP attacks
are pernicious, because they use existing,
legitimate code to perform malicious
behaviour. The authors combine multiple
techniques at the machine-code level.
For instance, they replace instruction
sequences with equal-length code of
identical functionality; Ward et al.59 cite the
example of replacing addition with negative
subtraction. Flow control structures are
also altered with no effect on programme
execution. The authors tested their system
against well-known ROP attacks and against
systems specifically designed to elude
in-place code randomisation and claim to
have defeated all such exploits.

Testing by Ward et al.60 showed no
memory overhead and ‘negligible’
performance impact.

This technology is extremely promising,
given its minimal system impact.

SDR category: Shuffling
Morphisec
Morphisec is commercially available, so
technical specifics are less readily available
than for research projects.61 The product
randomises memory and retains a copy of
non-randomised memory for troubleshooting
and exploit identification.62,63

SDR category: Shuffling
Dynaguard
Dynaguard64 is a highly specific technique
for protection against a particular class
of attack, namely blind return-oriented
programming (BROP). A BROP attack
seeks to defeat a protection mechanism called

Maclean.indd 9Maclean.indd 9 22/05/2020 08:0322/05/2020 08:03

Maclean

10 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

the stack canary. A stack canary is a random
number placed on the stack, and it warns
of a potential buffer overflow. Since both
parent and child processes use the same stack
canary, a BROP attack can reveal the canary
to bypass various protections. Dynaguard’s
method is basically to alter the canary value
of the child process.65

Although this method appears to have
very low overhead in terms of performance
and memory consumption, its specific
nature suggests that it is a continuation of
the ongoing ‘cat-and-mouse’ game between
attackers and defenders, rather than a
solution to a broad class of problems.

SDR category: N/a
ASLR-GUARD
Lu et al.66 have developed ASLR-GUARD,
in response to information leaks that let
attackers identify the memory locations
of code gadgets, despite the presence of
ASLR. They assert that ASLR-GUARD
can ‘render leak of data pointer [sic] useless
in deriving code address by separating code
and data, provide a secure storage for code
pointers’. The method protects against any
type of exploit that reuses code maliciously.
Testing by Ward et al.67 showed a minimal
performance impact (<1 per cent), a small
increase in executable file size (6.26 per cent),
and an increased load time (31 per cent).

This is a potentially strong technique, and
further research may yield improvements in
the load time issue.

SDR category: Shuffling, diversity
Polyverse
Full disclosure: Polyverse is a client of my
company, DLT Solutions. Consequently, I
will simply quote third-party evaluations and
descriptions, to avoid unintentional bias.

Ward et al. describe Polyverse as follows:68

‘Polyverse provides three different
products. The first product is a

compiler-based randomization
technique. This provides an install-
time randomization that scrambles the
program binary generated from the source
code without affecting the semantics
of the program. The scrambling can be
performed by simply pointing the Linux
package manager at the proper repository
(a one-line command). The second
product applies a similar randomization
to closed source applications where the
source code is unavailable (primarily for
the Windows operating system). This
technique employs binary rewriting to
apply a boot-time randomization to the
layout and instructions of close-source
binaries. The third product is a rapid
cycling technology that can be applied
to continuously running services (eg
web servers) to periodically restore their
environment to a pristine, good state.’

Ward et al. state that Polyverse has ‘negligible’
impact on performance and only a slight
impact on load time. They evaluate
Polyverse’s weaknesses as follows:

‘Two of the Polyverse products implement
one-time randomization. Such techniques
are vulnerable to information leakage, in
which an attacker may be able to discover
the location or content of relevant code
to construct an attack. Unlike traditional
ASLR, however, in which the disclosure
of one address gives sufficient information
for an attacker to infer the entire program’s
address space, under Polyverse, an attacker
would require far more information to be
leaked.’69

SDR category: Shuffling
Randomised instruction set emulation
(RISE)
Barrantes et al. developed randomised
instruction set emulation (RISE), which
seeks to incapacitate injected code attacks,
using a machine emulator to create

Maclean.indd 10Maclean.indd 10 22/05/2020 08:0322/05/2020 08:03

Moving target defence

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 4 1–14 Cyber Security: A Peer-Reviewed Journal 11

diversified instruction sets. Legitimate code
is encrypted at the byte level by XOR-ing
them with a random key re-generated
or chosen upon programme execution.70
The primary goal is to thwart return to
libc attacks. RISE runs atop the Valgrind
IA32-to-IA32 binary translator, which adds
considerable execution overhead: 400 per
cent, per Ward et al.71

It is difficult to see how the performance
penalty can be reduced enough to make this
a viable technique.

SDR category: Shuffling
MTD dynamic networking and platforms
N-variant systems, proposed by Cox
et al.72 are an extension of N-version
programming.73 The system works by
automatically creating and executing
diversified programme variants, and a
monitor determines if a single input results in
equivalent outputs on all variants. It guards
against attacks that inject malicious code or
manipulate flow-control mechanisms. The
authors’ performance testing results are given
in Table 1.74

The testing results look very strong;
this method deserves further investigation,
research and development.

SDR category: Diversity, redundancy
TALENT
The clumsily named system Trusted
Dynamic Logical Heterogeneity75 system
(TALENT) appears to be anything but
clumsy in operation. It leverages the agility
of containers and a portable checkpoint
compiler to migrate applications across
platforms (in about one second, according to
the authors) to elude attackers.

This is a significant result that could have
implications beyond security. Fast migration
across platforms could be useful in many
other use cases.

SDR category: Shuffling, diversity
Reconnaissance deception system
Reconnaissance deception system, developed
by Achleitner et al.,76 aims to defeat malicious
scanning of networks. The system uses
software-defined networking (SDN) to
implement five defence techniques:

1. Dynamic address translation: Rewrites
packet headers in real time to hide the
real host addresses and make the overall
address space of a network appear larger.

2. Route mutation: Alters the topology of
different network views so that a scanner
cannot detect the real network topology.

3. Vulnerable host placement: Places vulnerable
hosts in virtual subnets to increase the

Table 1: N-variant performance statistics

Configuration 1 2 3 4 5 6

Description Unmodified
Apache,
unmodified
kernel

Unmodified
Apache,
N-variant
kernel

2-variant
system,
address
partitioning

Apache
running
under
Strata

Apache
with
instruction
tags

2-variant
system,
instruction
tags

Unsaturated Throughput
(MB/s)

2.36 2.32 2.04 2.27 2.25 1.80

Latency
(ms)

2.35 2.40 2.77 2.42 2.46 3.02

Saturated Throughput
(MB/s)

9.70 9.59 5.06 8.54 8.30 3.55

Latency
(ms)

17.65 17.80 34.20 20.30 20.58 48.30

Maclean.indd 11Maclean.indd 11 22/05/2020 08:0322/05/2020 08:03

Maclean

12 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

duration a malicious scanner needs to
identify them.

4. Honeypot placement: Increases the number
of potential targets to confuse and slow
the attacker.

5. Dynamic detection of malicious flows:
Detects malicious flows trying to
establish connections to honeypots or
protected hosts.77

This technology more properly belongs in
the deception category but is presented here
out of general interest.

SDR category: Diversity
Open flow random host mutation (OFRHM)78

‘OFRHM transparently mutates IP
addresses with high unpredictability and
rate, while maintaining configuration
integrity and minimizing operation
overhead, in which the OpenFlow
controller frequently assigns each host a
random virtual IP that is translated to/
from the real IP of the host.’79

This technology is very promising, although
it appears to extend the ‘arms race’ with
the attacker, rather than to address a
fundamental issue.

CONCLUSION
In general, MTD is an area of emerging
research and development. Some areas,
particularly the area of dynamic data, are in
the very early stages, while others, such as
dynamic network defences, are more mature.
Dynamic runtime environments, which can
defeat a wide range of attacks exploiting
memory and flow-control mechanisms,
have great promise, and some commercial
products are currently available.

Assessing the effectiveness of these
technologies is clearly a key issue. Despite
the profusion of work in this area, some
analysts do not regard the MTD with favour.

David Evans and Anh Nguyen-Tuong,
authors of Effectiveness of Moving Target
Defenses,80 are two such sceptics. Their work
deserves serious attention, even if they are
the minority voice at the time of writing.

In addition, combining MTD defences
could increase the defenders’ options
dramatically and is an area of ongoing
research. Hybrid defences could increase the
attackers’ costs by orders of magnitude.

Regardless of the state of the technology,
I assert that the goal of MTD should not
be to seek impregnability — an illusion like
that of the Maginot Line — but to create
an economic asymmetry that favours the
defender. To win the war in cyberspace,
we must first convince ourselves that we
can win. There are many tools to enable
victory, and I believe MTD technology is
among them.

References
1. Maginot Line (n.d.), available at https://www.

merriam-webster.com/dictionary/Maginot Line
(accessed 17th April, 2020).

2. Ibid., note 1.
3. Lei, C., Hong-Qi, Zhang, Jonglei, T., Zhang, Y-C.

and Liu, X-H. (July 2018), ‘Moving Target Defense
Techniques: A Survey’, Security and Communication
Networks, No. 2, p. 2.

4. Sengupta, S., Chowdhary, A., Sabur, A., Huang,
D., Alshamrani, A. and Kambhampati, S. (2019),
‘A Survey of Moving Target Defenses for Network
Security’, p. 1.

5. Morgan, S. (June 2019), ‘Global Cybersecurity
Spending Predicted to Exceed $1 Trillion From
2017–2021’, Cybercrime Magazine, available at
https://cybersecurityventures.com/cybersecurity-
market-report/ (accessed 17th April, 2020).

6. Bradley, T. (October 2019), ‘The Standard
Cybersecurity Model Is Fundamentally Broken’,
Forbes, available at https://www.forbes.com/sites/
tonybradley/2019/10/07/the-standard-cybersecurity-
model-is-fundamentally-broken/#42df83581189
(accessed 17th April, 2020).

7. Ibid., note 7, p. 5.
8. Cai, G.-L., Wang, B.-S., Hu, W. and Wang, T.-Z.

(2016), ‘Moving target defense: State of the art and
characteristics’, Frontiers of Information Technology &
Electronic Engineering, Vol. 17, No. 11.

9. Ibid., note 2, p. 7.
10. Ibid., note 2, p. 5.
11. Manadhata, P. K. and Wing, J. M. (2011), ‘A Formal

Model for a System’s Attack Surface’, Advances in
Information Security Moving Target Defense, pp. 1–2.

Maclean.indd 12Maclean.indd 12 22/05/2020 08:0322/05/2020 08:03

Moving target defence

© Henry Stewart Publications 2398-5100 (2020) Vol. 3, 4 1–14 Cyber Security: A Peer-Reviewed Journal 13

12. Ibid., note 11.
13. Ibid., note 11, section 1.1.2.
14. Ibid., note 11, section 1.1.2.
15. Ibid., note 4.
16. Ward, B. C., Gomez, S. R., Skowyra, R. W.,

Bigelow, D., Martin, J. N., Landry, J. W. and
Okhravi, H. ‘Survey of Cyber Moving Targets,
Second Edition’, Lincoln Laboratory, MIT.

17. Cho, J-H., Sharma, D., Alavizadeh, H., Yoon, S.,
Ben-Asher, N., Moore, T., Kim, D., Lim, H. and
Nelson, F. (2019), ‘Toward Proactive, Adaptive
Defense: A Survey on Moving Target Defense’, IEEE
Communications Surveys & Tutorials, Vol. 22, No. 1,
pp. 709–745.

18. Ibid., note 17.
19. Ibid., note 17.
20. Ibid., note 17.
21. Ibid., note 15.
22. Ibid., note 15.
23. Ibid., note 17.
24. Ibid., note 16.
25. Interested readers can refer to Ward et al. (ibid., note

16) for more detail.
26. Ammann, P. E. and Knight, J. C. (1988), ‘Data

diversity: An approach to software fault tolerance’,
IEEE Transactions on Computers, Vol. 37, No. 4,
pp. 418–425.

27. Ibid., note 16.
28. Nguyen-Tuong, A., Evans, D., Knight, J. C., Cox,

B. and Davidson, J. W. (2008), ‘Security through
redundant data diversity’, IEEE International
Conference on Dependable Systems and Networks,
pp. 187–196.

29. Cadar, C., Akritidis, P., Costa, M., Martin, J. P. and
Castro, M. (2008), ‘Data randomization’, Technical
Report TR-2008-120, Microsoft Research.

30. Son, S., McKinley, K. and Shmatikov, V. (2013),
‘Diglossia: Detecting code injection attacks
with precision and efficiency’, Proceedings of
the 2013 ACM Conference on Computer and
Communications Security, pp. 1181–1191.

31. Vikram, S., Yang C. and Gu, G. (2013), ‘Nomad:
Towards non-intrusive moving-target defense against
web bots’, Proceedings of the 2013 IEEE Conference
on Communications and Network Security, pp.
55–63.

32. Pattuk, E., Kantarcioglu, M., Lin, Z. and Ulusoy,
H. (2014), ‘Preventing cryptographic key leakage
in cloud virtual machines’, in USENIX Security,
USENIX Association, pp. 703–718.

33. Smutz, C. and Stavrou, A. (2015), ‘Preventing
exploits in Microsoft Office documents through
content randomization’, Proceedings of the 18th
International Symposium on Research in Attacks,
Intrusions, and Defenses, Vol. 9404, Springer-Verlag,
New York, pp. 225–246.

34. Ibid., note 17.
35. Zheng, J. and Namin, A. S. (January 2019), ‘A

survey on the moving target defense strategies: An
architectural perspective’, Journal of Computer Science
and Technology, Vol. 34, No. 1, pp. 207–233.

36. Ibid., note 16.

37. Huang, Y. and Ghosh, A. K. (2011), ‘Introducing
Diversity and Uncertainty to Create Moving Target
Attack Surfaces for Web Services’, in Jajodia, S.,
Ghosh, A., Swarup, V., Wang, C. and Wang, X. (eds),
Moving Target Defense: Advances in Information Security,
Vol. 54, Springer, New York.

38. Ibid., note 37.
39. Ibid., note 37.
40. Azab, M. and Eltoweissy, M. (2012), ‘ChameleonSoft:

Software Behavior Encryption for Moving Target
Defens’, Mobile Networks and Applications, Vol. 18,
No. 2, pp. 271–292.

41. Ibid., note 40.
42. Taguinod, M., Doupé, A., Zhao, Z.and Ahn,

G-J. (2015), ‘Toward a moving target defense for
web applications’, IEEE International Conference
on Information Reuse and Integration (IRI),
pp. 510–517

43. Ibid., note 16.
44. Allier, S., Barais, O., Baudry, B., Bourcier, J.,

Daubert, E., Flurey, F., Monperrus, M., Song, H.
and Tricoire, M. (2015), ‘Multitier diversification
in Web-based software application’, IEEE Software,
Institute of Electrical and Electronics Engineers, Vol. 32,
No. 1, pp. 83–90

45. Fraser, T., Petkac, M. and Badger, L. (2002),
‘Security agility for dynamic execution
environments’, AFRL-IF-RS-TR-2002-229 Final
Technical Report, DARPA (2002), pp. 1–15

46. Ibid., note 16.
47. Le Goues, C., Nguyen T., Forrest, S. and Weimer, W.

(2012), ‘Genprog: A generic method for automatic
software repair’, IEEE Transactions on Software
Engineering, Vol. 38, No. 1, pp. 54–72.

48. Ibid., note 47.
49. Kil, C., Jun, J., Bookholt, C., Xu, J. and Ning, P.

(2006), ‘Address Space Layout Permutation
(ASLP): Towards Fine-Grained Randomization of
Commodity Software’, 22nd Annual Computer
Security Applications Conference (ACSAC06).

50. Ibid., note 16.
51. Ibid., note 16, p. 73.
52. Ibid., note 49, p. 9.
53. Novark, G. and Berger, E. D. (2010), ‘DieHarder’,

Proceedings of the 17th ACM Conference on
Computer and Communications Security – CCS 10.

54. Ibid., note 16, p. 77.
55. Zhu, G. and Tyagi, A. (2004), ‘Protection against

indirect overflow attacks on pointers’, Proceedings of
the 2nd IEEE International Information Assurance
Workshop.

56. Ibid., note 55, p. 1.
57. Ibid., note 16, p. 87.
58. Pappas, V., Polychronakis, M. and Keromytis, A. D.

(2012), ‘Smashing the Gadgets: Hindering Return-
Oriented Programming Using In-place Code
Randomization’, IEEE Symposium on Security and
Privacy.

59. Ibid., note 16, p. 100.
60. Ibid., note 16, p. 101.
61. Ibid., note 16.
62. Ibid., note 16, p. 103.

Maclean.indd 13Maclean.indd 13 22/05/2020 08:0322/05/2020 08:03

Maclean

14 Cyber Security: A Peer-Reviewed Journal Vol. 3, 4 1–14 © Henry Stewart Publications 2398-5100 (2020)

63. Interested readers are referred to ‘Advanced
Endpoint Detection: Prevent the Most Dangerous
Cyberattacks’, Morphisec, available at www.
morphisec.com (accessed 17th April, 2020).

64. Petsios, T., Kemerlis, V. P., Polychronakis, M. and
Keromytis, A. D. (2015), ‘DynaGuard, Proceedings
of the 31st Annual Computer Security Applications
Conference on – ACSAC 2015.

65. Ibid., note 64, p. 1.
66. Lu, K., Song, C., Lee, B., Chung, S. P., Kim, T. and

Lee, W. (2015), ‘Aslr-guard: Stopping address space
leakage for code reuse attacks’, Proceedings of the
22nd ACM SIGSAC Conference on Computer and
Communications Security, ACM, pp. 280–291.

67. Ibid., note 16, p. 141.
68. Ibid., note 16, pp. 150–152.
69. Ibid., note 16.
70. Barrantes, E., Ackley, D., Forrest, S. and Stefanovic,

D. (2005), ‘Randomized instruction set emulation’,
ACM Transactions on Information Systems Security,
Vol. 8, No. 1, pp. 3–40.

71. Ibid., note 16, p. 164.
72. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu,

W., Davidson, J., Knight, J., Nguyen-Tuong, A.
and Hiser, J. (August 2006), ‘N-Variant Systems: A
Secretless Framework for Security through Diversity’,
15th USENIX Security Symposium, Vancouver, BC.

73. Chen, L. and Avizienis, A. (1995), ‘N-Version
Programming: A Fault-Tolerance Approach to

Reliability Of Software Operation’, Twenty-
Fifth International Symposium on Fault-Tolerant
Computing, Highlights from Twenty-Five Years’,
Pasadena, CA, p. 113.

74. Ibid., note 73, p. 12.
75. Okhravi, H., Comella, A., Robinson, E. and Haines,

J. (2012), ‘Creating a cyber moving target for critical
infrastructure applications using platform diversity’,
International Journal of Critical Infrastructure Protection,
Vol. 5, No. 1, pp. 30–39.

76. Achleitner, S., La Porta, T., McDaniel, P., Sugrim,
S., Krishnamurthy, S. and Chadha, R. (2016),
‘Cyber deception: Virtual networks to defend
insider reconnaissance’, Proceedings of the 8th ACM
CCS International Workshop on Managing Insider
Security Threats, ACM, pp. 57–68.

77. Ibid., note 76, p. 59
78. Jafarian, J. H., Al-Shaer, E. and Duan, Q. (2012),

‘Openflow random host mutation’, Proceedings
of the First Workshop on Hot Topics in Software
Defined Networks – HotSDN 12.

79. Ibid., note 78.
80. Evans, E. and Nguyen-Tuong, A. (2011),

‘Effectiveness of Moving Target Defenses’, in Jajodia,
S., Ghosh, A. K., Swarup, V., Wang, C. and Wang,
X. S. (eds), Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats, Springer, New York,
pp. 29–46.

Maclean.indd 14Maclean.indd 14 22/05/2020 08:0322/05/2020 08:03

