Sheared-Flow Stabilized Z pinch: Stability via Sheared Flow

- **Z pinch**
- Axial current in “Z” direction (green arrows)
- Azimuthal magnetic field (blue loops)
- Field compresses plasma
- Radial shear in axial flow stabilizes the Z pinch

FuZE Demonstrates Sustained Neutron Production

- ARPA-E ALPHA supported project UW & LLNL
- Neutron production for ~10 us, thousands of MHD growth times (Zhang et al., PRL 2019)
- Neutron spectra consistent with thermonuclear production
 - Any D beam < 7.5 keV (Mitrani in preparation)
- Over 400 kA pinch current averaged over a flow time
- Results are guiding next steps and reactor development

Zap Energy’s Next SFS Z Pinch: FuZE-Q

- Increasing current to over 600 kA
- Further improvement of fusion triple product and neutron yield
 \[n kT \propto D^{1.3} \text{ and } Y_e \propto D^{1.1} \]
- \(Y_e \propto D^{1.3} \) observed in D-D scaling, experimental and computational results
- Improved diagnostics for higher performance SFS Z pinches
 - Increased resolution for smaller pinches at high current
 - Working with ARPA-E Diagnostic Teams
- High-fidelity modeling and validation with experimental results
 - PMI, electrode durability, improved operational domains, etc.

Detailed Numerical Simulations have been Critical to Improved Understanding

Nonlinear fluid and kinetic simulations using Mach2 (MHD), WARPXM (multi-fluid), and LSP (PIC) to:
1. Study sheared flow stabilization, (b) design experimental details, (c) model whole device, (d) predict neutron yield

Zap Energy Reactor: Liquid LiPb Outer Wall

- No magnetic field coils nor auxiliary heating
- Liquid LiPb outer wall
 - Return electrode
 - Heat transfer fluid
 - Tritium breeding
 - Biological shield
- Pulses several times per second
 - ~200 MWh per core
- Multiple fusion cores in plant
 - Aids maintenance
 - Common tritium handling facility
 - Can vary generating capacity to match demand

3-m LiPb Blanket Yields TBR~1.1

- Limited number of components in direct line of D-T neutrons
 - TBR ~ 1.1 eutectic LiPb & natural 6Li enrichment
 - Bootstrap from D-D to 50-50 D-T in about 1 month
 - Refining pilot plant development and reactor design (Series B)

Summary:

- A radial shear in the axial flow stabilizes the Z-pinch
- FuZE has demonstrated sheared-flow stabilized (SFS) Z-pinches:
 - SFS Z-pinch lifetimes 10,000x the static-pinch MHD growth time
 - D-D neutron production \(Y_e \propto D^{1.1} \) & consistent with thermonuclear production
 - Over 400 kA pinch current, averaged over the flow-through time
 - \(n kT \approx 10^{17} \text{ keV s m}^{-3} \)

- FuZE-Q underway to push to over 600 kA pinch current (~breakeven)
- SFS Z-pinch reactor concept is compact: ~3-m cylinder, no coils
 - LiPb walls
 - TBR ~ 1.1; D-D to 50-50 D-T bootstrap in ~ 1 month
 - Modular 200-MWth cores
- Pilot plant and reactor design under development

www.zap.energy