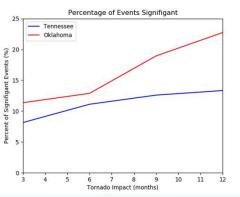
The Impact of Tornadoes on Local Economies

Dennis Weaver (Central Michigan University) Mentored by: Kim Klockow, Harold Brooks, Alan Gerard Funded by: NOAA Ernest F. Hollings Program

Results

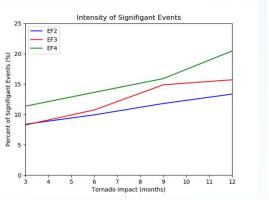
Abstract

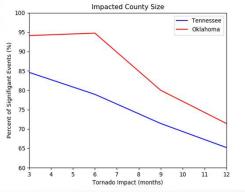

This study utilizes county level sales tax data to investigate the economic impact of tornado activity on local communities in the states of Tennessee (1999-2019) and Oklahoma (2004-2019). After accounting for large scale economic trends and various local variables, a fixed effects model is developed. The resulting model shows intense (EF4+) tornadoes and tornadoes affecting largely populated areas cause significant economic changes. While statistically significant events in both states show a wide range of impacts, Tennessee tornadoes were found to have more extreme effects. A set of models capable of predicting economic activity following a tornado event would be useful for understanding the geographic regions most prone to economic change and aid in post-disaster relief efforts.

Introduction

- Comparing localized economic impact of strong (EF2+) tornadoes in Tennessee (1999-2019) and Oklahoma (2004-2019)
- Wide variety of potential impacts:
 - Positive: recovery spending/rebuilding, new investment, external grant support
 - Negative: loss of jobs/income, loss/disruption of businesses
- Previous research focused on hurricanes showed up to 5% decrease in employment

Methodology


- Model includes:
 - National economic activity (GDP)
 - County-level population, employment, income
 - Seasonality
 - Recessions
 - Tornadoes
- Tornado effects examined over 3, 6, 9, and 12 month time intervals
- For multiple tornadoes in same county, we capture average effect


Significant Events as Percentage of Total

Independent Variables	Tennessee (1999-2019)	Oklahoma (2004-2019)
Constant	-2.416E+06 (1.92E+05)	5.136E+05 (5.99E+04)
GDP	1.339E+04 (864.254)	-1612.866E+06 (258.408
Population	-51.542 (1.003)	-2.102 (0.323)
Income	1.272 (0.018)	0.301 (0.005)
Employment	162.700 (1.530)	-11.138 (0.398)
Seasonality	4.221E+04 (1.76E+04)	8018.167 (4043.610)
Recession	-2.886E+04 (6.49E+04)	7840.685 (1.59E+04)
Tornadoes	N = 135	N = 132
R-squared	0.965	0.542
Adj. R-squared	0.965	0.537

Significant Events (%) by Intensity

Significant Events (%) by County Size

Future Work

- Want model that can predict economic impact of tornado independent of geographic boundaries
- Could be a useful tool for:
 - Evaluating areas likely to experience an economic change
 - Aid in recovery
 - Efficiently allocate post-disaster relief funds

Summary

- Model captures larger percentage of stronger tornadoes, suggesting higher accuracy predicting changes in sales tax
- Model captures events almost exclusively in higher populated areas, suggesting higher accuracy when tornado impacts larger areas
- Tornadoes have a wide range of positive/negative impacts

References

 Donadelli, M., M. Juppner, A. Paradiso, and M. Chislitti, 2020: Tornado activity, house prices, and stock returns. *The North American Journal of Economics and Finance*, **52**. https://doi.org/10.1016/j.najef.2020.101162